

PROPOSTA DE PREÇOS

Encaminhamos nossa proposta eletrônica, alusiva à Pesquisa de Preços nº 202406190003, que nos foi enviada através do e-mail pmmilha.compras@m2atecnologia.com.br. aos dezenove dias do mês de junho de dois mil e vinte e quatro, pelo(a) Prefeitura Municipal de Milhã, inscrito(a) no CNPJ sob o nº 06.741.565/0001-06.

ITEM	DESCRIÇÃO	MARCA	QTD.	UND.	V. UNIT. (R\$)	V. TOTAL (R\$)
1	POLTRONA PARA AUDITÓRIO	TRINITY	400,00	Unidade	2.693,00	1.077.200,00

Especificação: Poltrona auditório: A estrutura da poltrona deve ser desenvolvida por tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, nas dimensões de diâmetro 22,22 mm e deve ter espessura média de 1,5 mm, conformados pelo processo mecânico de dobramento de tubos. Na localização superior da estrutura do assento deve ser soldada uma armação que deverá possuir a funcionalidade de articular posições de sentar e sair, nela deve ser fixada uma chapa de aço carbono ABNT 1008/1020 com espessura média de 2,65 mm para perfeita fixação do assento, na ponta do tubo deve ser fixada uma mola helicoidal de retrocesso que deverá ser fabricada em arame EB2050, com diâmetro das aspiras de 4,0 mm de alta resistência e durabilidade a fadiga dinâmica, deve ser utilizada para articulação sincronizada do conjunto com suporte em termoplástico de engenharia (Copolímero de Polipropileno) com 38 mm de largura e 42 mm de profundidade, com seus cantos arredondados. Deve possuir ainda dois tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, na configuração frontal com diâmetro 25,4 mm e com espessura de 1,5 mm e comprimento total de 355 mm, já na configuração traseira as dimensões devem girar em torno de 605 mm com diâmetro de 25,4 mm, espessura média de 1,5 mm, com uma extensão maior que a do pé frontal. Para que este suporte (Pedestal) se fixe a estrutura do assento deve ser desenvolvido um calço em termoplástico de engenharia (Copolímero de Polipropileno) com dimensões de 244 mm de comprimento 31 mm de largura. Na configuração para porta copos devem ser soldado ao suporte (pedestal) uma chapa de aco Sliter 1006/1010 com 227,8 mm de comprimento e 50,0 mm de largura. Para que toda a estrutura se mantenha estável e com alto grau de estabilidade deve ser desenvolvida uma chapa para fixação ao piso de aço carbono ABNT 1010/1020 com acabamento bruto superficial oleado de 305 mm de comprimento e 1,9 mm de espessura, que deverá ter seus cantos arredondados, cobertos por ponteiras plásticas em termoplástico de engenharia (Copolímero de Polipropileno), Por fim deve ser fabricada uma blindagem plástica para cobrir toda a extensão do suporte (Pedestal) em termoplástico de engenharia (Copolímero de Polipropileno) e sua parte externa com nervuras, com 335 mm de comprimento e 180 mm de largura, devem ser fabricados pelo processo de injeção. Toda estrutura deve receber uma proteção de preparação de superfície metálica em nanotecnologia (Nano -Cerâmica) e revestimento eletrostático epóxi pó, que deve garantir proteção e maior vida útil ao produto. Para montagem da estrutura deve ser utilizado os parafusos Cab. Panela Auto Atarraxante Phillips ZB Diâmetro 4,8x19, Parafuso Maquina Cab. Lentilha Fenda Phillips ZB 1/4x1.1/2, Porca SX Autotrav NC ZP 1/4, Arruela Lisa ZP EXT 17 mm INT 6,35 mm ESP. 1,2 mm, Parafuso Sextavado Rosca Soberba ZB 3/8 x 60 mm, Bucha S12, Ponteira Plástica Abaulada D 34x2,50 mm preto. O apoio de braço retrátil em termoplástico de engenharia (Copolímero de Polipropileno) deve ser fabricado pelo processo de injeção, com 257 mm de comprimento e 50 mm de largura, deve possuir também conexão do braço retrátil onde deverá proporcionar sua funcionalidade, com diâmetro de 13,50 mm e 41 mm de comprimento, para seu perfeito funcionamento deve ser desenvolvida uma mola helicoidal com filetes de diâmetro 0,60 mm com diâmetro total de 5,3 mm e 18,6 mm de comprimento, por fim para acoplamento do conjunto deve ser fabricada uma conexão em forma de bucha onde deverá facilitar a montagem em termoplástico de engenharia (Copolímero de Polipropileno) nervurada, com 29 mm de largura e 69 mm de comprimento, fabricada pelo processo de injeção. A configuração do braco deverá possuir também a opcão de porta copos, que deve ser desenvolvido em termoplástico de engenharia (Copolímero de Polipropileno) e deve ser fabricado pelo processo de injeção, com 58,4 mm de largura e 308,4 mm de comprimento com seus cantos arredondados, para montagem a estrutura deverão ser colocados parafusos sextavados flangeado aço 1045 UNC ZP 1/4 x 1.3/4 e ponteira para acabamento preta, plástica. O assento deve ser constituído por uma estrutura plástica injetada em termoplástico de engenharia (Copolímero de polipropileno) que deve ser fabricado pelo processo de injeção, com nervuras internas para reforçar ainda mais o componente, que deve ser parafusado a uma alma plástica também deve ser injetada em termoplástico de engenharia (Copolímero de Polipropileno) onde deverá ser fabricado pelo processo de injeção. Deve possuir uma espuma laminada com densidade de 52 kg/m³ podendo ocorrer variações na ordem de +- 2 kg/m³. O assento deve ser revestido pelo processo de tapeçamento convencional. Suas dimensões devem girar em torno de 442 mm de largura, 455 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros inferiores. O encosto deve ser fabricado pelo processo de injeção, na extremidade frontal deve ser parafusado a alma plástica em termoplástico de engenharia

(Copolímero de Polipropileno), deverá possuir ainda uma espuma injetada com densidade de 26 kg/m³ podendo ocorrer variações na bTRAM de +- 2 kg/m³PESGRUSÃO deve ser revestido MARSÃOcesso de tATR;amento UNPencional SUHNITEI(R\$hsões develATAÍta(R\$h) torno de 460 mm de largura 445 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros superiores. Para montagem da alma plástica a estrutura do encosto deve ser utilizada os parafusos Fixer FL Phillips ZP D 4,5x16 mm. Apresentar junto com a proposta comercial, Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, de esgarcamento máximo da costura padrão, do tecido, no mínimo de 45 mm para ambos os sentidos conforme ABNT NBR 9925:2009 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da densidade de fios de no mínimo 16 fios/cm, para ambos os sentidos conforme ABNT NBR 10588:2005 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da gramatura da superfície têxtil do tecido de no mínimo 250 gm², conforme ABNT NBR 10591:2008 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de espessura laminado sintético do vinil, de no mínimo 0.90 mm de espessura, conforme ABNT NBR 14099; 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de da resistência a tração e alongamento da ruptura sintético do vinil, de no mínimo 75 n/cm de forca de rompimento e no mínimo 34% de alongamento, conforme ABNT NBR 14552: 2021 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da massa por unidade de área sintética do vinil, com gramatura mínima de 550 gm², conforme ABNT NBR 14554: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 1250 N de força máxima no sentido da trama e alongamento a força máxima 40% no sentido da trama, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 950 N de força máxima no sentido da trama e alongamento a forca máxima 20% no sentido da urdime, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, comportamento ao fogo, determinação da facilidade de ignição de corpo de prova orientados verticalmente, conforme a ISO 6940: 2014 ou posterior. Relatório de ensaio emitido por laboratório, que a espuma utilizada na fabricação do produto é isenta de CFC. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação das características da queima, de material poliméricos celulares flexíveis, conforme ABNT NBR 9178: 2022 ou posterior. Certificado de conformidade emitido por uma OCP, comprovando que o fabricante tem seu processo de preparação e pintura de superfícies metálicas, garantindo o atendimento e conformidade às normas ABNT NBR 8094, ABNT NBR 8095, ABNT NBR 8096, ASTM D 523, ASTM D 3359, ASTM D 3363, ASTM D 7091, NBR 5841, ASTM D 2794, NBR ISO 4628-3. O certificado de conformidade deverá vir acompanhado dos relatórios/laudos de ensaios completos. Certificado de cadeia de custódia, ou similares, para produtos de origem Florestal (Forestry Stewardship Council - FSC ou Certificação Florestal / Programme for the Endorsement of Forest Certification Cerflor/Pefc). Caso a empresa classificada não seja fabricante, ela deve apresentar documento que comprove que o fabricante do produto possui tal certificação, ou declaração que seu fornecedor de matéria prima é certificado. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8515/2020 – espuma flexível de poliuretano – determinação da resistência à tração. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8516:2015 - espuma flexível de poliuretano - determinação da resistência ao rasgamento. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8537:2015 - espuma flexível de poliuretano - determinação da densidade. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8797:2017 - espuma flexível de poliuretano - determinação da deformação permanente à compressão. Relatório de ensajo emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9177:2003 espuma flexível de poliuretano - determinação da fadiga dinâmica. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9176/2016 para determinação da força necessária para se produzir uma compressão pré-fixada sobre uma amostra de espuma flexível de poliuretano, aplicada sobre uma área determinada. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 14961/2016 determinação do teor de cinzas em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8619/15 determinação da resiliência em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8910/2016, determinação da resistência à compressão de espumas flexí-veis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro com a NBR 9209/86 atestando que os produtos possuem revestimento em fosfato com massa iqual ou superior a 1,55q/m²; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a tinta aplicada espessura e camada de tinta NBR 10443/08, com no mínimo 70 micros, com ensaio feito a partir de chapa de aço A36 6.35x76,20mm; Laudo ou declaração, comprovando que o mobiliário ofertado, com imagem e medidas está dentro da norma regulamentadora NR 17 ergonomia, acompanhado por cópia de documento de identidade profissional (CREA OU CRM) ou ART paga com a devida comprovação de autenticidade, que comprove habilitação e especialização em medicina do trabalho, ergonomia ou engenharia segurança do trabalho, para emissão do respectivo laudo. Catálogo técnico do produto, nos quais necessariamente constarão imagens e desenhos com cotas, comprovando que o item ofertado faz parte de sua linha de fabricação. Esta condição será de extrema relevância para a avaliação do mesmo, assim como os seguintes fatores: conformidade com as especificações, características técnicas e certificados de conformidade apresentados, qualidade, durabilidade, acabamento, estética, ergonomia e funcionalidade. A não apresentação acarretará desclassificação do licitante. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a resistência a flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno – norma ASTM D790; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a ISO 178:2019 quanto a resistência a tensão por flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno; Relatório de ensaio acreditado pelo Inmetro, atestando a análise de materiais por espectroscopia no infravermelho (FTIR) em plástico pp(polipropileno) e ABS (acrilonitrila butadieno estireno), norma ASTM E1252:1998; Laudo emitido por laboratório quando a atividade anti-viral de acordo com a ISO 21702:2019 em produtos porosos e não porosos (Polipropileno e ABS), para a família do SARS-CoV-2 (Corona-Vírus).

ITEM DESCRIÇÃO MARCA UND. V. UNIT. (R\$) QTD. V. TOTAL (R\$)

A presente proposta importa no montante total de R\$ 1.077.200,00 (um milhão e setenta e sete mil, duzentos reais)

Prazo de validade da proposta: 90 dias

Forma de pagamento: À Prazo

Condições de pagamento: 30 DIAS

Declaro que na presente proposta de preço estão inclusos todos os impostos, taxas, fretes e demais despesas incidentes sobre o objeto da pesquisa de preço.

Fortaleza / CE, 21 de junho de 2024

FRANCISCO CARLOS F. DOS SANTOS JUNIOR CNPJ/MF N° 32.279.643/0001-02

O AVENIDA MINISTRO JOSÉ AMÉRICO, 326, SALAS:404 E 405,

EDITORA PETER ROHL LTDA CNPJ/MF: 12.529.451/0001-08

PROPOSTA DE PREÇOS

Encaminhamos nossa proposta eletrônica, alusiva à Pesquisa de Preços n° 202406190003, que nos foi enviada através do e-mail pmmilha.compras@m2atecnologia.com.br, aos dezenove dias do mês de junho de dois mil e vinte e quatro, pelo(a) Prefeitura Municipal de Milhã, inscrito(a) no CNPJ sob o n° 06.741.565/0001-06.

ITEM	DESCRIÇÃO	MARCA	QTD.	UND.	V. UNIT. (R\$)	V. TOTAL (R\$)
1	POLTRONA PARA AUDITÓRIO	SANTA CLARA	400,00	Unidade	2.865,00	1.146.000,00

Especificação: Poltrona auditório: A estrutura da poltrona deve ser desenvolvida por tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, nas dimensões de diâmetro 22,22 mm e deve ter espessura média de 1,5 mm, conformados pelo processo mecânico de dobramento de tubos. Na localização superior da estrutura do assento deve ser soldada uma armação que deverá possuir a funcionalidade de articular posições de sentar e sair, nela deve ser fixada uma chapa de aço carbono ABNT 1008/1020 com espessura média de 2,65 mm para perfeita fixação do assento, na ponta do tubo deve ser fixada uma mola helicoidal de retrocesso que deverá ser fabricada em arame EB2050, com diâmetro das aspiras de 4,0 mm de alta resistência e durabilidade a fadiga dinâmica, deve ser utilizada para articulação sincronizada do conjunto com suporte em termoplástico de engenharia (Copolímero de Polipropileno) com 38 mm de largura e 42 mm de profundidade, com seus cantos arredondados. Deve possuir ainda dois tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, na configuração frontal com diâmetro 25,4 mm e com espessura de 1,5 mm e comprimento total de 355 mm, já na configuração traseira as dimensões devem girar em torno de 605 mm com diâmetro de 25,4 mm, espessura média de 1,5 mm, com uma extensão maior que a do pé frontal. Para que este suporte (Pedestal) se fixe a estrutura do assento deve ser desenvolvido um calço em termoplástico de engenharia (Copolímero de Polipropileno) com dimensões de 244 mm de comprimento 31 mm de largura. Na configuração para porta copos devem ser soldado ao suporte (pedestal) uma chapa de aço Sliter 1006/1010 com 227,8 mm de comprimento e 50,0 mm de largura. Para que toda a estrutura se mantenha estável e com alto grau de estabilidade deve ser desenvolvida uma chapa para fixação ao piso de aço carbono ABNT 1010/1020 com acabamento bruto superficial oleado de 305 mm de comprimento e 1,9 mm de espessura, que deverá ter seus cantos arredondados, cobertos por ponteiras plásticas em termoplástico de engenharia (Copolímero de Polipropileno), Por fim deve ser fabricada uma blindagem plástica para cobrir toda a extensão do suporte (Pedestal) em termoplástico de engenharia (Copolímero de Polipropileno) e sua parte externa com nervuras, com 335 mm de comprimento e 180 mm de largura, devem ser fabricados pelo processo de injeção. Toda estrutura deve receber uma proteção de preparação de superfície metálica em nanotecnologia (Nano -Cerâmica) e revestimento eletrostático epóxi pó, que deve garantir proteção e major vida útil ao produto. Para montagem da estrutura deve ser utilizado os parafusos Cab. Panela Auto Atarraxante Phillips ZB Diâmetro 4,8x19, Parafuso Maquina Cab. Lentilha Fenda Phillips ZB 1/4x1.1/2, Porca SX Autotrav NC ZP 1/4, Arruela Lisa ZP EXT 17 mm INT 6,35 mm ESP. 1,2 mm, Parafuso Sextavado Rosca Soberba ZB 3/8 x 60 mm, Bucha S12, Ponteira Plástica Abaulada D 34x2,50 mm preto. O apoio de braço retrátil em termoplástico de engenharia (Copolímero de Polipropileno) deve ser fabricado pelo processo de injeção, com 257 mm de comprimento e 50 mm de largura, deve possuir também conexão do braço retrátil onde deverá proporcionar sua funcionalidade, com diâmetro de 13,50 mm e 41 mm de comprimento, para seu perfeito funcionamento deve ser desenvolvida uma mola helicoidal com filetes de diâmetro 0.60 mm com diâmetro total de 5.3 mm e 18.6 mm de comprimento, por fim para acoplamento do conjunto deve ser fabricada uma conexão em forma de bucha onde deverá facilitar a montagem em termoplástico de engenharia (Copolímero de Polipropileno) nervurada, com 29 mm de largura e 69 mm de comprimento, fabricada pelo processo de injeção. A configuração do braço deverá possuir também a opção de porta copos, que deve ser desenvolvido em termoplástico de engenharia (Copolímero de Polipropileno) e deve ser fabricado pelo processo de injeção, com 58,4 mm de largura e 308,4 mm de comprimento com seus cantos arredondados, para montagem a estrutura deverão ser colocados parafusos sextavados flangeado aço 1045 UNC ZP 1/4 x 1.3/4 e ponteira para acabamento preta, plástica. O assento deve ser constituído por uma estrutura plástica injetada em termoplástico de engenharia (Copolímero de polipropileno) que deve ser fabricado pelo processo de injeção, com nervuras internas para reforçar ainda mais o componente, que deve ser parafusado a uma alma plástica também deve ser injetada em termoplástico de engenharia (Copolímero de Polipropileno) onde deverá ser fabricado pelo processo de injeção. Deve possuir uma espuma laminada com densidade de 52 kg/m³ podendo ocorrer variações na ordem de +- 2 kg/m³. O assento deve ser revestido pelo processo de tapeçamento convencional. Suas dimensões devem girar em torno de 442 mm de largura, 455 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros inferiores. O encosto deve ser fabricado pelo processo de injeção, na extremidade frontal deve ser parafusado a alma plástica em termoplástico de engenharia

EDITORA PETER ROHL LTDA CNPJ/MF: 12.529.451/0001-08

(Copolímero de Polipropileno), deverá possuir ainda uma espuma injetada com densidade de 26 kg/m³ podendo ocorrer variações na JTEMM de +- 2 kg/m³PESGRIGÃO deve ser revestido MARGAcesso de tATR;amento UNPencional. SUNIVII/RENsões deve JATAHARSIN torno de 460 mm de largura 445 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros superiores. Para montagem da alma plástica a estrutura do encosto deve ser utilizada os parafusos Fixer FL Phillips ZP D 4,5x16 mm. Apresentar junto com a proposta comercial, Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, de esgarcamento máximo da costura padrão, do tecido, no mínimo de 4,5 mm para ambos os sentidos conforme ABNT NBR 9925:2009 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da densidade de fios de no mínimo 16 fios/cm, para ambos os sentidos conforme ABNT NBR 10588:2005 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da gramatura da superfície têxtil do tecido de no mínimo 250 gm², conforme ABNT NBR 10591:2008 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de espessura laminado sintético do vinil, de no mínimo 0,90 mm de espessura, conforme ABNT NBR 14099: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de da resistência a tração e alongamento da ruptura sintético do vinil, de no mínimo 75 n/cm de força de rompimento e no mínimo 34% de alongamento, conforme ABNT NBR 14552; 2021. ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da massa por unidade de área sintética do vinil, com gramatura mínima de 550 gm², conforme ABNT NBR 14554: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 1250 N de força máxima no sentido da trama e alongamento a força máxima 40% no sentido da trama, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 950 N de força máxima no sentido da trama e alongamento a força máxima 20% no sentido da urdime, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, comportamento ao fogo, determinação da facilidade de ignição de corpo de prova orientados verticalmente, conforme a ISO 6940: 2014 ou posterior. Relatório de ensaio emitido por laboratório, que a espuma utilizada na fabricação do produto é isenta de CFC. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação das características da queima, de material poliméricos celulares flexíveis, conforme ABNT NBR 9178: 2022 ou posterior. Certificado de conformidade emitido por uma OCP, comprovando que o fabricante tem seu processo de preparação e pintura de superfícies metálicas, garantindo o atendimento e conformidade às normas ABNT NBR 8094, ABNT NBR 8095, ABNT NBR 8096, ASTM D 523, ASTM D 3359, ASTM D 3363, ASTM D 7091, NBR 5841, ASTM D 2794, NBR ISO 4628-3. O certificado de conformidade deverá vir acompanhado dos relatórios/laudos de ensaios completos. Certificado de cadeia de custódia, ou similares, para produtos de origem Florestal (Forestry Stewardship Council - FSC ou Certificação Florestal / Programme for the Endorsement of Forest Certification -Cerflor/Pefc). Caso a empresa classificada não seja fabricante, ela deve apresentar documento que comprove que o fabricante do produto possui tal certificação, ou declaração que seu fornecedor de matéria prima é certificado. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8515/2020 - espuma flexível de poliuretano - determinação da resistência à tração. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8516:2015 - espuma flexível de poliuretano - determinação da resistência ao rasgamento. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8537:2015 - espuma flexível de poliuretano - determinação da densidade. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8797:2017 - espuma flexível de poliuretano - determinação da deformação permanente à compressão. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9177:2003 espuma flexível de poliuretano - determinação da fadiga dinâmica. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9176/2016 para determinação da força necessária para se produzir uma compressão pré-fixada sobre uma amostra de espuma flexível de poliuretano, aplicada sobre uma área determinada. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 14961/2016 determinação do teor de cinzas em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8619/15 determinação da resiliência em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8910/2016, determinação da resistência à compressão de espumas flexí-veis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro com a NBR 9209/86 atestando que os produtos possuem revestimento em fosfato com massa igual ou superior a 1,55q/m²; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a tinta aplicada espessura e camada de tinta NBR 10443/08, com no mínimo 70 micros, com ensaio feito a partir de chapa de aço A36 6.35x76,20mm; Laudo ou declaração, comprovando que o mobiliário ofertado, com imagem e medidas está dentro da norma regulamentadora NR 17 ergonomia, acompanhado por cópia de documento de identidade profissional (CREA OU CRM) ou ART paga com a devida comprovação de autenticidade, que comprove habilitação e especialização em medicina do trabalho, ergonomia ou engenharia segurança do trabalho, para emissão do respectivo laudo. Catálogo técnico do produto, nos quais necessariamente constarão imagens e desenhos com cotas, comprovando que o item ofertado faz parte de sua linha de fabricação. Esta condição será de extrema relevância para a avaliação do mesmo, assim como os seguintes fatores: conformidade com as especificações, características técnicas e certificados de conformidade apresentados, qualidade, durabilidade, acabamento, estética, ergonomia e funcionalidade. A não apresentação acarretará desclassificação do licitante. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a resistência a flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno - norma ASTM D790; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a ISO 178:2019 quanto a resistência a tensão por flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno; Relatório de ensaio acreditado pelo Inmetro, atestando a análise de materiais por espectroscopia no infravermelho (FTIR) em plástico pp(polipropileno) e ABS (acrilonitrila butadieno estireno), norma ASTM E1252:1998; Laudo emitido por laboratório quando a atividade anti-viral de acordo com a ISO 21702:2019 em produtos porosos e não porosos (Polipropileno e ABS), para a família do SARS-CoV-2 (Corona-Vírus).

EDITORA PETER ROHL LTDA CNPJ/MF: 12.529.451/0001-08

ITEM DESCRIÇÃO MARCA QTD. UND. V. UNIT. (R\$) V. TOTAL (R\$)

A presente proposta importa no montante total de R\$ 1.146.000,00 (um milhão, cento e quarenta e seis mil reais)

Prazo de validade da proposta: 60 dias

Forma de pagamento: À Prazo

Condições de pagamento: 30

Declaro que na presente proposta de preço estão inclusos todos os impostos, taxas, fretes e demais despesas incidentes sobre o objeto da pesquisa de preço.

POSITIVO COMERCIO DE ARTIGOS DE PAPELARIA LTDA

CNPJ/MF: 37.990.239/0001-66

PROPOSTA DE PREÇOS

Encaminhamos nossa proposta eletrônica, alusiva à Pesquisa de Preços n° 202406190003, que nos foi enviada através do e-mail pmmilha.compras@m2atecnologia.com.br, aos dezenove dias do mês de junho de dois mil e vinte e quatro, pelo(a) Prefeitura Municipal de Milhã, inscrito(a) no CNPJ sob o n° 06.741.565/0001-06.

ITEM	DESCRIÇÃO	MARCA	QTD.	UND.	V. UNIT. (R\$)	V. TOTAL (R\$)
1	POLTRONA PARA AUDITÓRIO	FRISOKAR	400,00	Unidade	2.793,00	1.117.200,00

Especificação: Poltrona auditório: A estrutura da poltrona deve ser desenvolvida por tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, nas dimensões de diâmetro 22,22 mm e deve ter espessura média de 1,5 mm, conformados pelo processo mecânico de dobramento de tubos. Na localização superior da estrutura do assento deve ser soldada uma armação que deverá possuir a funcionalidade de articular posições de sentar e sair, nela deve ser fixada uma chapa de aço carbono ABNT 1008/1020 com espessura média de 2,65 mm para perfeita fixação do assento, na ponta do tubo deve ser fixada uma mola helicoidal de retrocesso que deverá ser fabricada em arame EB2050, com diâmetro das aspiras de 4,0 mm de alta resistência e durabilidade a fadiga dinâmica, deve ser utilizada para articulação sincronizada do conjunto com suporte em termoplástico de engenharia (Copolímero de Polipropileno) com 38 mm de largura e 42 mm de profundidade, com seus cantos arredondados. Deve possuir ainda dois tubos industriais de construção mecânica de aço carbono ABNT 1008/1020, na configuração frontal com diâmetro 25,4 mm e com espessura de 1,5 mm e comprimento total de 355 mm, já na configuração traseira as dimensões devem girar em torno de 605 mm com diâmetro de 25,4 mm, espessura média de 1,5 mm, com uma extensão maior que a do pé frontal. Para que este suporte (Pedestal) se fixe a estrutura do assento deve ser desenvolvido um calço em termoplástico de engenharia (Copolímero de Polipropileno) com dimensões de 244 mm de comprimento 31 mm de largura. Na configuração para porta copos devem ser soldado ao suporte (pedestal) uma chapa de aco Sliter 1006/1010 com 227,8 mm de comprimento e 50.0 mm de largura. Para que toda a estrutura se mantenha estável e com alto grau de estabilidade deve ser desenvolvida uma chapa para fixação ao piso de aço carbono ABNT 1010/1020 com acabamento bruto superficial oleado de 305 mm de comprimento e 1,9 mm de espessura, que deverá ter seus cantos arredondados, cobertos por ponteiras plásticas em termoplástico de engenharia (Copolímero de Polipropileno), Por fim deve ser fabricada uma blindagem plástica para cobrir toda a extensão do suporte (Pedestal) em termoplástico de engenharia (Copolímero de Polipropileno) e sua parte externa com nervuras, com 335 mm de comprimento e 180 mm de largura, devem ser fabricados pelo processo de injeção. Toda estrutura deve receber uma proteção de preparação de superfície metálica em nanotecnologia (Nano -Cerâmica) e revestimento eletrostático epóxi pó, que deve garantir proteção e major vida útil ao produto. Para montagem da estrutura deve ser utilizado os parafusos Cab. Panela Auto Atarraxante Phillips ZB Diâmetro 4,8x19, Parafuso Maquina Cab. Lentilha Fenda Phillips ZB 1/4x1.1/2, Porca SX Autotrav NC ZP 1/4, Arruela Lisa ZP EXT 17 mm INT 6,35 mm ESP. 1,2 mm, Parafuso Sextavado Rosca Soberba ZB 3/8 x 60 mm, Bucha S12, Ponteira Plástica Abaulada D 34x2,50 mm preto. O apoio de braço retrátil em termoplástico de engenharia (Copolímero de Polipropileno) deve ser fabricado pelo processo de injeção, com 257 mm de comprimento e 50 mm de largura, deve possuir também conexão do braço retrátil onde deverá proporcionar sua funcionalidade, com diâmetro de 13,50 mm e 41 mm de comprimento, para seu perfeito funcionamento deve ser desenvolvida uma mola helicoidal com filetes de diâmetro 0.60 mm com diâmetro total de 5.3 mm e 18.6 mm de comprimento, por fim para acoplamento do conjunto deve ser fabricada uma conexão em forma de bucha onde deverá facilitar a montagem em termoplástico de engenharia (Copolímero de Polipropileno) nervurada, com 29 mm de largura e 69 mm de comprimento, fabricada pelo processo de injeção. A configuração do braco deverá possuir também a opção de porta copos, que deve ser desenvolvido em termoplástico de engenharia (Copolímero de Polipropileno) e deve ser fabricado pelo processo de injeção, com 58,4 mm de largura e 308,4 mm de comprimento com seus cantos arredondados, para montagem a estrutura deverão ser colocados parafusos sextavados flangeado aco 1045 UNC ZP 1/4 x 1.3/4 e ponteira para acabamento preta, plástica. O assento deve ser constituído por uma estrutura plástica injetada em termoplástico de engenharia (Copolímero de polipropileno) que deve ser fabricado pelo processo de injeção, com nervuras internas para reforçar ainda mais o componente, que deve ser parafusado a uma alma plástica também deve ser injetada em termoplástico de engenharia (Copolímero de Polipropileno) onde deverá ser fabricado pelo processo de injeção. Deve possuir uma espuma laminada com densidade de 52 kg/m³ podendo ocorrer variações na ordem de +- 2 kg/m³. O assento deve ser revestido pelo processo de tapeçamento convencional. Suas dimensões devem girar em torno de 442 mm de largura, 455 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros inferiores. O encosto deve ser fabricado pelo processo de injeção, na extremidade frontal deve ser parafusado a alma plástica em termoplástico de engenharia

POSITIVO COMERCIO DE ARTIGOS DE PAPELARIA LTDA

CNPJ/MF: 37.990.239/0001-66

(Copolímero de Polipropileno), deverá possuir ainda uma espuma injetada com densidade de 26 kg/m³ podendo ocorrer variações na JTEMM de +- 2 kg/m³PESGRIGÃO deve ser revestido MARGAcesso de tAJR, amento UNPencional. SUM TilARS nões deve ARTA HARS n torno de 460 mm de largura 445 mm de profundidade. Sua geometria deve apresentar em suas extremidades cantos arredondados para diminuir a pressão arterial dos membros superiores. Para montagem da alma plástica a estrutura do encosto deve ser utilizada os parafusos Fixer FL Phillips ZP D 4,5x16 mm. Apresentar junto com a proposta comercial, Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, de esgarcamento máximo da costura padrão, do tecido, no mínimo de 4,5 mm para ambos os sentidos conforme ABNT NBR 9925:2009 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da densidade de fios de no mínimo 16 fios/cm, para ambos os sentidos conforme ABNT NBR 10588:2005 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da gramatura da superfície têxtil do tecido de no mínimo 250 gm², conforme ABNT NBR 10591:2008 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de espessura laminado sintético do vinil, de no mínimo 0.90 mm de espessura, conforme ABNT NBR 14099; 2016 ou posterior, Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação de da resistência a tração e alongamento da ruptura sintético do vinil, de no mínimo 75 n/cm de forca de rompimento e no mínimo 34% de alongamento, conforme ABNT NBR 14552: 2021 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da massa por unidade de área sintética do vinil, com gramatura mínima de 550 gm², conforme ABNT NBR 14554: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 1250 N de força máxima no sentido da trama e alongamento a força máxima 40% no sentido da trama, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação da força máxima e alongamento a força máxima utilizando o método de tira do tecido, de no mínimo 950 N de força máxima no sentido da trama e alongamento a força máxima 20% no sentido da urdime, conforme ABNT NBR 13934: 2016 ou posterior. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, comportamento ao fogo, determinação da facilidade de ignição de corpo de prova orientados verticalmente, conforme a ISO 6940: 2014 ou posterior. Relatório de ensaio emitido por laboratório, que a espuma utilizada na fabricação do produto é isenta de CFC. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro, determinação das características da queima, de material poliméricos celulares flexíveis, conforme ABNT NBR 9178: 2022 ou posterior. Certificado de conformidade emitido por uma OCP, comprovando que o fabricante tem seu processo de preparação e pintura de superfícies metálicas, garantindo o atendimento e conformidade às normas ABNT NBR 8094, ABNT NBR 8095, ABNT NBR 8096, ASTM D 523, ASTM D 3359, ASTM D 3363, ASTM D 7091, NBR 5841, ASTM D 2794, NBR ISO 4628-3. O certificado de conformidade deverá vir acompanhado dos relatórios/laudos de ensaios completos. Certificado de cadeia de custódia, ou similares, para produtos de origem Florestal (Forestry Stewardship Council - FSC ou Certificação Florestal / Programme for the Endorsement of Forest Certification -Cerflor/Pefc). Caso a empresa classificada não seja fabricante, ela deve apresentar documento que comprove que o fabricante do produto possui tal certificação, ou declaração que seu fornecedor de matéria prima é certificado. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8515/2020 - espuma flexível de poliuretano - determinação da resistência à tração. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8516:2015 - espuma flexível de poliuretano - determinação da resistência ao rasgamento. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8537:2015 - espuma flexível de poliuretano - determinação da densidade. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8797:2017 - espuma flexível de poliuretano - determinação da deformação permanente à compressão. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9177:2003 espuma flexível de poliuretano - determinação da fadiga dinâmica. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 9176/2016 para determinação da força necessária para se produzir uma compressão pré-fixada sobre uma amostra de espuma flexível de poliuretano, aplicada sobre uma área determinada. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 14961/2016 determinação do teor de cinzas em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8619/15 determinação da resiliência em espumas flexíveis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a NBR 8910/2016, determinação da resistência à compressão de espumas flexí-veis de poliuretano. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro com a NBR 9209/86 atestando que os produtos possuem revestimento em fosfato com massa igual ou superior a 1,55q/m²; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a tinta aplicada espessura e camada de tinta NBR 10443/08, com no mínimo 70 micros, com ensaio feito a partir de chapa de aço A36 6.35x76,20mm; Laudo ou declaração, comprovando que o mobiliário ofertado, com imagem e medidas está dentro da norma regulamentadora NR 17 ergonomia, acompanhado por cópia de documento de identidade profissional (CREA OU CRM) ou ART paga com a devida comprovação de autenticidade, que comprove habilitação e especialização em medicina do trabalho, ergonomia ou engenharia seguranca do trabalho, para emissão do respectivo laudo. Catálogo técnico do produto, nos quais necessariamente constarão imagens e desenhos com cotas, comprovando que o item ofertado faz parte de sua linha de fabricação. Esta condição será de extrema relevância para a avaliação do mesmo, assim como os seguintes fatores: conformidade com as especificações, características técnicas e certificados de conformidade apresentados, qualidade, durabilidade, acabamento, estética, ergonomia e funcionalidade. A não apresentação acarretará desclassificação do licitante. Relatório de ensaio emitido por laboratório acreditado pelo Inmetro quanto a resistência a flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno - norma ASTM D790; Relatório de ensaio emitido por laboratório acreditado pelo Inmetro de acordo com a ISO 178:2019 quanto a resistência a tensão por flexão do assento e encosto, carteiras e pranchetas em resina termoplástica copolímero de polipropileno; Relatório de ensaio acreditado pelo Inmetro, atestando a análise de materiais por espectroscopia no infravermelho (FTIR) em plástico pp(polipropileno) e ABS (acrilonitrila butadieno estireno), norma ASTM E1252:1998; Laudo emitido por laboratório quando a atividade anti-viral de acordo com a ISO 21702:2019 em produtos porosos e não porosos (Polipropileno e ABS), para a família do SARS-CoV-2 (Corona-Vírus).

POSITIVO COMERCIO DE ARTIGOS DE PAPELARIA LTDA

CNPJ/MF: 37.990.239/0001-66

ITEM DESCRIÇÃO MARCA	QTD.	UND.	V. UNIT. (R\$)	V. TOTAL (R\$)
----------------------	------	------	----------------	----------------

A presente proposta importa no montante total de R\$ 1.117.200,00 (um milhão, cento e dezessete mil, duzentos reais)

Prazo de validade da proposta: 60 dias

Forma de pagamento: À Prazo

Condições de pagamento: 30

Declaro que na presente proposta de preço estão inclusos todos os impostos, taxas, fretes e demais despesas incidentes sobre o objeto da pesquisa de preço.

