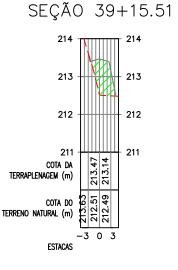
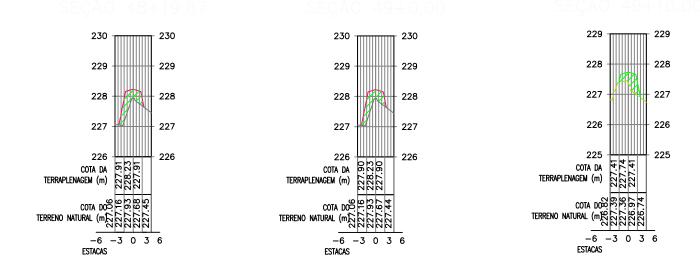
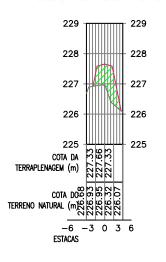
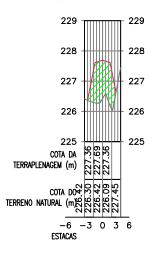

1.BUEIRO PROJETADO BDTC DN 60 CM

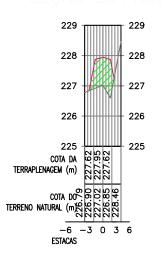


		QU	ADRO	DE CU	BAÇÃO		
SEÇÃO	ÁREA DE ATERRO	ÁREA DE CORTE	VOLUME DE ATERRO	VOLUME DE CORTE	ATERRO ACUMULADO	CORTE ACUMULADO	MOVIMENTO
37+2.81	1.35	0.00	0.00	0.00	0.00	0.00	0.00
37+10.00	2.96	0.00	15.48	0.00	15.48	0.00	-15.48
38+0.00	5.23	0.00	40.92	0.00	56.40	0.00	-56.40
38+10.00	7.53	0.00	63.83	0.00	120.23	0.00	-120.23
39+0.00	8.27	0.00	79.04	0.00	199.26	0.00	-199.26
39+10.00	6.21	0.00	72.14	0.00	271.41	0.00	-271.41
39+15.51	4.21	0.02	28.70	0.06	300.11	0.06	-300.05


Orten Othon Selica Lerna
JOTA BARROS PROJETOS
Artur Othon Silva Lima
Eng" Civil – CREA 352222-CE


01 SEÇÃO TRANSVERSAL ESCALA H:1/1000 - V:1/100

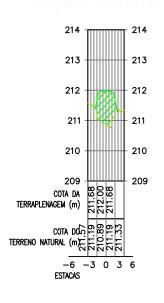


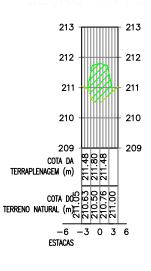


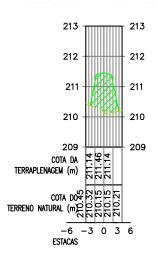
PREFEITURA DE MILHÃ-CE									
ESTRADA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ - CE									
	SEÇÕES TRANVERSAIS - BUEIRO 01	ESCALA:							
PROJETISTA:	ARTUR OTHON SILVA LIMA - ENG° CIVIL - CREA 352222 CE.	INDICADO							
ARQUIVO:	MLH_REP_TER_BELO MONTE_R0.DWG								

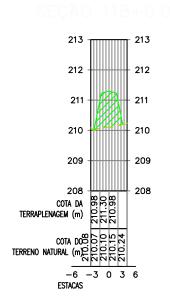
01 SEÇÃO TRANSVERSAL

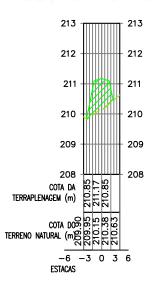
ESCALA H:1/1/000-V:1/1/00

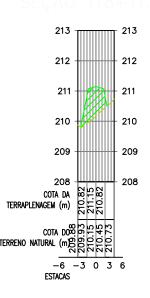



		QU	ADRO I	DE CU	BAÇÃO		
SEÇÃO	ÁREA DE ATERRO	ÁREA DE CORTE	VOLUME DE ATERRO	VOLUME DE CORTE	ATERRO ACUMULADO	CORTE ACUMULADO	MOVIMENTO
48+19.87	3.60	0.00	0.00	0.00	0.00	0.00	0.00
49+0.00	3.58	0.00	0.48	0.00	0.48	0.00	-0.48
49+10.00	2.70	0.00	31.39	0.00	31.87	0.00	-31.87
50+0.00	6.33	0.00	45.94	0.00	77.81	0.00	-77.81
50+10.00	9.84	0.00	80.87	0.00	158.67	0.00	-158.67
50+15.89	6.88	0.00	49.27	0.00	207.95	0.00	-207.95

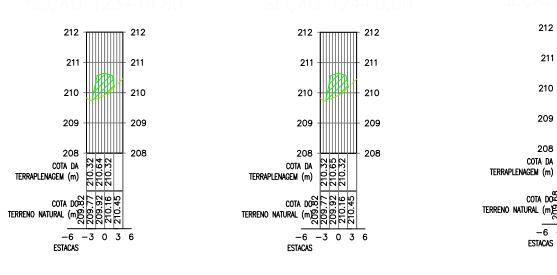



		PREFEITURA DE MILHÃ-CE	PRANCHA:
	ESTRADA \	/ICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO	01/04
		MUNICÍPIO DE MILHÃ - CE	01/04
	SEÇ	ĎES TRANVERSAIS E QUADRO DE CUBAÇÃO - BUEIRO 01	ESCALA:
10	PROJETISTA:	ARTUR OTHON SILVA LIMA - ENG° CIVIL - CREA 352222 CE.	INDICADO
Ş	ARQUIVO:	MLH_REP_TER_SÃO JOÃO_R00.DWG	

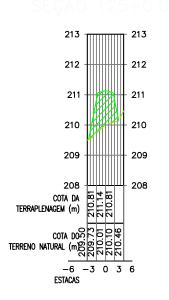

2.BUEIRO PROJETADO BSTC DN 80 CM

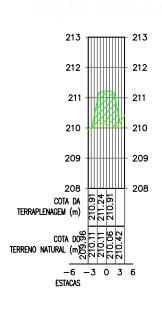


01 SEÇÃO TRANSVERSAL ESCALA H:1/1/000 - V:1/1/00



QUADRO DE CUBAÇÃO									
SEÇÃO	ÁREA DE ATERRO	ÁREA DE CORTE	VOLUME DE ATERRO	VOLUME DE CORTE	ATERRO ACUMULADO	CORTE ACUMULADO	MOVIMENTO		
116+14.16	6.23	0.00	0.00	0.00	0.00	0.00	0.00		
117+0.00	7.78	0.00	40.91	0.00	40.91	0.00	-40.91		
117+10.00	8.75	0.00	82.65	0.00	123.56	0.00	-123.56		
118+0.00	8.33	0.00	85.43	0.00	209.00	0.00	-209.00		
118+10.00	6.83	0.00	75.83	0.00	284.82	0.00	-284.82		
118+11.76	6.54	0.00	11.64	0.00	296.46	0.00	-296.46		




	PREFEITURA DE MILHÃ-CE	PRANCHA:
ESTRADA \	/ICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO	02/04
	MUNICÍPIO DE MILHÃ - CE	02/04
SEÇ	ĎES TRANVERSAIS E QUADRO DE CUBAÇÃO- BUEIRO 02	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA - ENG° CIVIL - CREA 352222 CE.	INDICADO
AROLIIVO:	MI H REP TER SÃO IOÃO ROO DWG	

3.BUEIRO PROJETADO BSTC DN 80 CM

		QU.	ADRO [DE CUI	BAÇÃO		
SEÇÃO	ÁREA DE ATERRO	ÁREA DE CORTE	VOLUME DE ATERRO	VOLUME DE CORTE	ATERRO ACUMULADO	CORTE ACUMULADO	MOVIMENTO
123+19.80	4.22	0.00	0.00	0.00	0.00	0.00	0.00
124+0.00	4.26	0.00	0.86	0.00	0.86	0.00	-0.86
124+10.00	5.79	0.00	50.22	0.00	51.08	0.00	-51.08
125+0.00	8.56	0.00	71.76	0.00	122.84	0.00	-122.84
125+10.00	7.86	0.00	82.38	0.00	205.22	0.00	-205.22
126+0.00	3.07	0.00	54.67	0.00	259.89	0.00	-259.89
126+1.88	2.41	0.00	5.18	0.00	265.07	0.00	-265.07

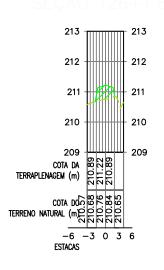
212

211

210

209

208


COLY DY 12.012 (W) 12.012 (C) 10.87 (C) 10.87

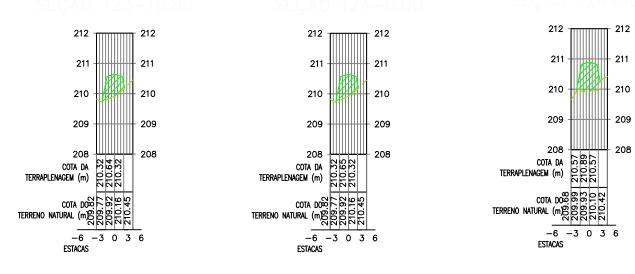
-6 -3 0 3 6

- 212

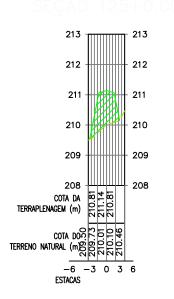
211

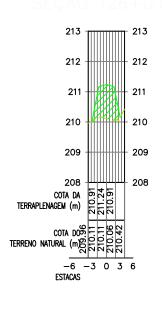
- 210

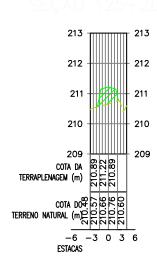
01 SEÇÃO TRANSVERSAL ESCALA H:1/1000 - V:1/1000

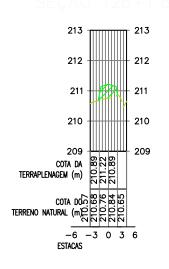


	PREFEITURA DE MILHÃ-CE	PRANCHA:
ESTRADA \	/ICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO MUNICÍPIO DE MILHÃ - CE	03/04
SEÇ	ĎES TRANVERSAIS E QUADRO DE CUBAÇÃO- BUEIRO 03	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA - ENG° CIVIL - CREA 352222 CE.	INDICADO
AROLIIVO:	MI H REP TER SÃO IOÃO ROO DWG	


Onten Othon Silva Lema JOTA BARROS PROJETOS

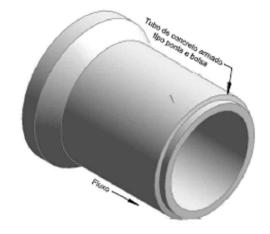

Artur Othon Silva Lima Eng[®] Civil – CREA 352222-CE

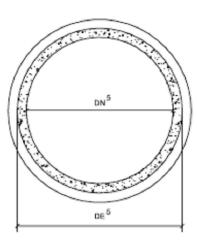

3.BUEIRO PROJETADO BSTC DN 80 CM



QUADRO DE CUBAÇÃO										
SEÇÃO	ÁREA DE ATERRO	ÁREA DE CORTE	VOLUME DE ATERRO	VOLUME DE CORTE	ATERRO ACUMULADO	CORTE ACUMULADO	MOVIMENTO			
123+19.80	4.22	0.00	0.00	0.00	0.00	0.00	0.00			
124+0.00	4.26	0.00	0.86	0.00	0.86	0.00	-0.86			
124+10.00	5.79	0.00	50.22	0.00	51.08	0.00	-51.08			
125+0.00	8.56	0.00	71.76	0.00	122.84	0.00	-122.84			
125+10.00	7.86	0.00	82.38	0.00	205.22	0.00	-205.22			
126+0.00	3.07	0.00	54.67	0.00	259.89	0.00	-259.89			
126+1.88	2.41	0.00	5.18	0.00	265.07	0.00	-265.07			

01 SEÇÃO TRANSVERSAL ESCALA H:1/1000 - V:1/100




	PREFEITURA DE MILHÃ-CE	PRANCHA:
ESTRADA \	/ICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO MUNICÍPIO DE MILHÃ - CE	04/04
SEÇÓ	ĎES TRANVERSAIS E QUADRO DE CUBAÇÃO- BUEIRO 04	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA - ENG° CIVIL - CREA 352222 CE.	INDICADO
ARQUIVO:	MLH_REP_TER_SÃO JOÃO_R00.DWG	

Onten Othon Schoolema JOTA BARROS PROJETOS

Artur Othon Silva Lima Eng® Civil – CREA 352222-CE

TUBOS DE CONCRETO ARMADO APLICÁVEIS AOS BUEIROS - TC

Seção ongitudina Sem escala

Perspectiva

Seção transversal Sem escala

			Sem escala																	um uscaja															
							Classes de resistência do												s tubos	:															
		Berço granular (Brita 1 ou areia)																				Berço	de co	ncreto											
	lições de	DN							Altı	ıra de a	aterro (m)4							DN							Altu	ıra de a	aterro ((m)4						
asser	ntamento	(cm)	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,50	6,00	6,50	7,00	7,50	8,00	8,50	(cm)	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,50	6,00	6,50	7,00	7,50	8,00	8,50
	e e	60	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA4	PA4	60	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3
	talude	80	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	80	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA3
"E	com tal vertical	100	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	100	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2
kN/m³	Vala co	120	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	120	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2
2 19	Š	150	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	150	PA1	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2
- E		60	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	ESP	60	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4
8		80	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	80	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4
Solos	Aterro	100	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	100	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA4
"	¥	120	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	120	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4
		150	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	150	PA1	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4
\vdash	n,	60	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	PA4	PA4	60	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3
	talude	80	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	PA4	80	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA3						
e e	com tal	100	PA1	PA1	PA2	PA2	PA2	PA3	PA3		PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	100	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3
kN/m³	ver o	120	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	120	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3
21	Vala	150	PA1	PA1	PA2	PA2	PA2		PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	150	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3
γ		60	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	ESP	ESP	60	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4
E 03		80	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	ESP	80	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4
Solos	Aterro	100	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	ESP	100	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4
S	Ate	120	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	ESP	120	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4
														*****				-															4		
		150	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	ESP	150	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4

Diâmetro nominal (DN), Diâmetro externo (DE), espessura da parede (e), peso específico do solo (y) e classe especcial (ESP);	JOTA BARROS PROJETOS
os desenhos 6.3 (a) e (b) são apresentadas as seções típicas para assentamento dos tubos sobre berço granular (Brita 1 ou areia) ou de cara o detalhamento do berço de concreto consultar o desenho 6.1 (a) e para o berço granular (Brita 1 ou areia) consultar o desenho 6.1 (b	concreto; _{Artur} Othon Silva Lima). Eng® Civil – CREA 352222-CE

	PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
ESTRA	ADA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ-CE	01 /05
	DETALHAMENTO DE DRENAGEM	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
ARQUIVO:	MLH_REP_DETDREN_BELO MONTE_R0.DWG	SEIVI ESC.

Tubo de concreto armado tipo ponta e bolsa

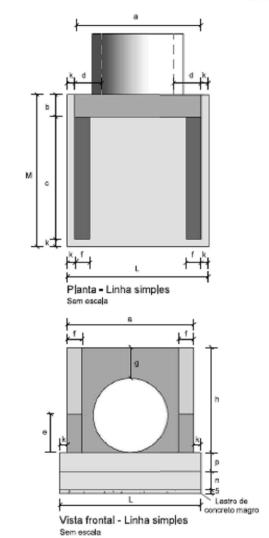
100 (mínimo)

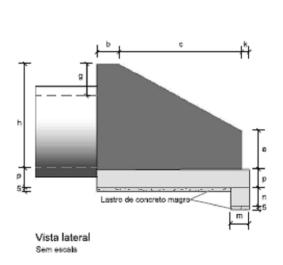
Fluxo

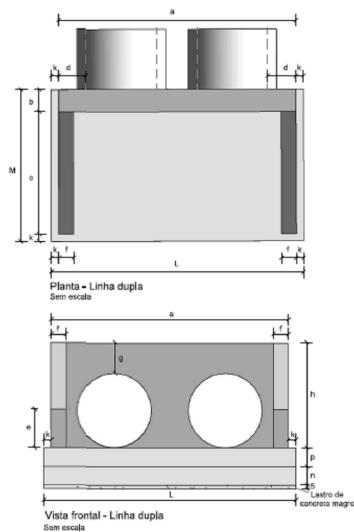
Berço granular (Brita 1 ou areia)

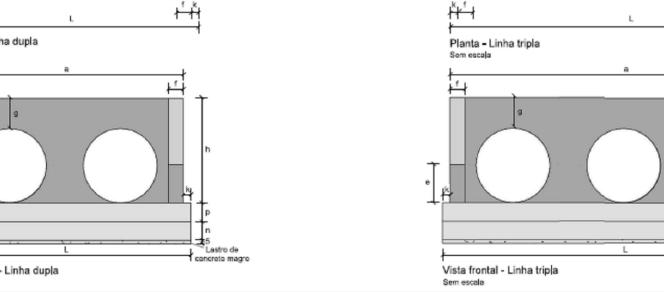
ou de concreto 7

Conformação de encaixe das


extremidades (ponta e bolsa)


¹⁻ Dimensões em centímetros (Cm), exceto alturas de aterro, indicadas em metros (m); 2- os bueiros tubulares de concreto devem atender aos requisitos da norma DNIT 023-ES


^{3 -} As classes de resistência aplicam-se aos bueiros de concreto armado com encaixe ponta e bolsa, com dimensões conforme a norma ABNT NBR 8890, assentados em linhas simples, duplas ou triplas; 4- Altura do aterro (h) acima do tubo até o greide de pavimento; Onten Othon Selva Lema


⁵⁻ Diâ 6-Nos 7-Para

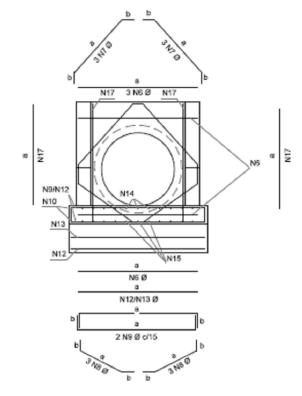
BOCAS NORMAIS COM ALAS RETAS ADAPTÁVEIS AOS BUEIROS TUBULARES DE CONCRETO - BNAR

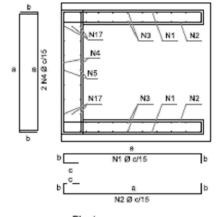
										Con	sumos	médio	5 ³								
(Dispositivo	Adaptável em	Encaixável em	a (cm)	b (cm)	c (cm)	d (cm)	e (cm)	f (cm)	g (cm)	h (cm)	k (cm)	m (cm)	n (cm)	p (cm)	L (cm)	M (cm)	Concreto magro (m³/un)	Fôrma (m²/un)	Concreto fck ≥ 20 MPa (m³/un)	Aço CA-50 (kg/un)
	BNAR 01	BSTC 60	DAD 60-26	110	20	125	25	41	15	28	88	10	20	30	20	130	155	0,1008	5,9465	0,8600	49,3535
simples	BNAR 02	BSTC 80	DAD 125-30	125	25	145	23	46	15	40	120	10	20	30	20	145	180	0,1305	8,4867	1,2194	74,9853
	BNAR 03	BSTC 100	DAD 170-35	170	30	165	35	52	20	42	142	10	25	40	25	190	205	0,1948	12,1262	2,2926	136,9862
Linha	BNAR 04	BSTC 120 DAD 200		200	40	180	40	58	20	43	163	10	25	40	25	220	230	0,2530	15,3481	3,1322	206,5227
	BNAR 05	BSTC 150	DAD 240-54	240	50	260	45	75	20	44	194	10	25	40	30	260	320	0,4160	24,7097	5,5992	353,2299
	BNAR 06	BDTC 80	-	260	25	145	26	35	15	40	120	10	20	30	20	280	180	0,2520	10,9094	2,0417	129,6944
dupla	BNAR 07	BDTC 100	DAD 320-35	320	30	165	34	52	20	42	142	10	25	40	25	340	205	0,3485	15,5654	3,6146	216,1476
Linha	BNAR 08	BDTC 120	DAD 370-45	370	40	180	36	63	20	43	163	10	25	40	25	390	230	0,4485	19,6781	4,9537	300,3186
_	BNAR 09	BDTC 150	DAD 435-55	435	50	260	36	76	20	44	194	10	25	40	30	455	320	0,7280	29,9674	8,6793	522,9481
tripla	BNAR 10	BTTC 100	DAD 470-35	470	30	165	32	52	20	42	142	10	25	40	25	490	205	0,5023	19,0046	4,9368	295,5107
es	BNAR 11	BTTC 120	-	545	40	180	35	60	20	43	163	10	25	40	25	565	230	0,6498	23,8762	6,8128	455,0895
Linh	BNAR 12	BTTC 150	-	650	50	260	37	80	20	44	194	10	25	40	30	670	320	1,0720	36,2891	12,1810	711,1437

- 1-Dimensões em centimetros (cm);
- 2-As bocas para bueiros tubulares devem atender aos requisitos da norma DNIT 026-ES;
- 3- Os consumos médios indicados correspondem aos quantitativos efetivos segundo a geometria do dispositivo;
- 4-A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolítica;
- 5-Tubos de concreto armado com encaixe ponta e bolsa, possuem espessura (e) variável de acordo com a classe de resistência, conforme a norma ABNT NBR 8890.

Onten Othon Silva Lema JOTA BARROS PROJETOS

Artur Othon Silva Lima

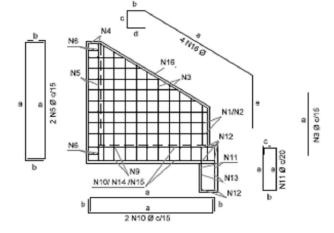

Eng® Civil - CREA 352222-CE

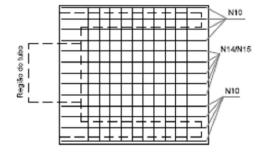

		PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
	ESTRA	DA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ-CE	02 /05
		DETALHAMENTO DE DRENAGEM	ESCALA:
L	PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
	ARQUIVO:	MLH_REP_DETDREN_BELO MONTE_R0.DWG	SEIVI ESC.

±5 Lastro de

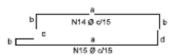
BOCAS NORMAIS COM ALAS RETAS ADAPTÁVEIS AOS BUEIROS SIMPLES TUBULARES DE CONCRETO - BNAR

				Quad	ro de armaduras								
Dispositivo	Adaptável em	Posição	ø (mm)	Quantidade	Espaçamento (cm)			ora (c	Ė		Comp. Unitário	Comp. Total	Peso Total
_	,		(mm)	(un)	(cm)	a	b	С	d	е	(cm)	(cm)	(Kg)
		N1	6,3	10	15	VAR	9	21	-	-	VAR	1535	3,7608
		N2	6,3	10	15	VAR	9	21	-	-	VAR	1535	3,7608
		N3	6,3	36	15	VAR	-	-	-	-	VAR	2824	6,9188
		N4 6	6,3	26	15	VAR	14	-	-	-	VAR	1737	4,2557
		N5 ⁶	6,3	24	15	VAR	14	-	-	-	VAR	1725	4,2263
		N6	6,3	6	7	104	-	-	-	-	104	624	1,5288
		N7	6,3	6	7	52	15	-	-	-	82	494	1,2092
DNADO	DOTO CO	N8	6,3	6	7	42	15	-	-	-	72	434	1,0640
BNAR 01	BSTC 60	N9	6,3	16	15	124	14	-	-	-	152	2432	5,9584
		N10	6,3	12	15	149	14	-	-	-	177	2124	5,2038
		N11	5,0	9	20	44	14	9	-	-	134	1206	1,8572
		N12	8,0	6	_	124	-	-	-	-	124	744	2,9388
		N13	5,0	2	_	124	-	-	-	-	124	248	0,3819
		N14	6,3	3	15	129	14	-	-	-	157	471	1,1540
		N15	6,3	3	15	149	7	17	-	-	187	561	1,3745
		N16	6,3	4	_	127	20	14	14	56	231	923	2,2614
		N17	6,3	6	7	102	-	-	-	-	102	612	1,4994
		N1	6.3	14	15	VAR	9	21		_	VAR	2254	5,5223
		N2	6.3	14	15	VAR	9	21		_	VAR	2254	5,5223
		N3	6.3	36	15	VAR	-	-	-	_	VAR	3833	9,3908
		N4 6	8.0	34	15	VAR	19	_	_	_	VAR	2502	9,8829
		N5 6	8.0	32	15	VAR	19		-	_	VAR	2455	9,6973
		N6	8.0	6	9	119	-	-	_	_	119	714	2,8203
		N7	8,0	6	9	84	15	_		_	114	684	2,6999
		N8	8.0	6	9	57	15	-		_	87	525	2,0726
BNAR 02	BSTC 80	N9	6.3	18	15	139	14	-		_	167	3006	7,3647
		N10	6,3	12	15	174	14	-	-	_	202	2424	5,9388
		N11	5.0	10	20	44	14	9] [_	134	1340	2,0636
		N12	6.3	6		139	-	-			139	834	2,0636
		N13	5.0	2	l	139				-	139	278	0,4281
		N14	6.3	4	15	149	14	-	-	-	177	708	1,7346
		N14 N15	6,3	4	15	174	5	19	14	-	212	846	2,0727
		N16	6,3	4	-	160	21	25	19	36	261	1043	2,5554
		N17	8,0	6	9	134	-	-	-	-	134	804	3,1758
		N1	6.3	18	15	VAR	14	21	-	-	VAR	3459	8,4746
		N2	6,3	18	15	VAR	14	21		-	VAR	3459	8,4746
		N3	6,3	48	15	VAR	-	-		-	VAR	5613	13,7519
		N4 6	8,0	42	15	VAR	24	_		_	VAR	4178	16,5031
		N5 ⁶	8.0	40	15	VAR	24	_	_	_	VAR	4068	16,0686
		N6	8,0	6	12	164		_		_	164	984	3,8868
		N7	8,0	6	12	113	15	-		_	143	855	3,3787
		N8	8,0	6	12	90	15	-		_	120	717	2,8331
BNAR 03	BSTC 100	N9	8,0	22	15	184	19		-	_	222	4884	19,2918
		N10	8,0	16	15	199	19	-	[_	237	3792	14,9784
		N11	6,3	13	20	59	19	9	[_	174	2262	5,5419
		N12	10,0	6		184	13				184	1104	6,8117
		N12 N13	6,3	2	-	184		-	[-	184	368	0,9016
		N13 N14		5	15		10	10	-	-			
		N14 N15	8,0	5	15	169 199	19 7	19	40	-	207	1035	4,0883
		I NTS	8.0	. 5	15	199	/	24	19	-	249	1248	4,9296
		N16	6,3	4	_	185	26	24	24	72	332	1329	3,2561





Planta Armadura dos muros de aja e de testa Sem escala


Vista fronta

Armadura de borda para a proteção do tubo Armadura da Isje de fundação Som escala

Região do tubo de concreto

Armadura da laje de fundação Sem escala

Planta

Vista lateral

Armadura dos muros de ala e de testa Armadura da viga e da Jaje de fundação Sem escala

Eng® Civil - CREA 352222-CE

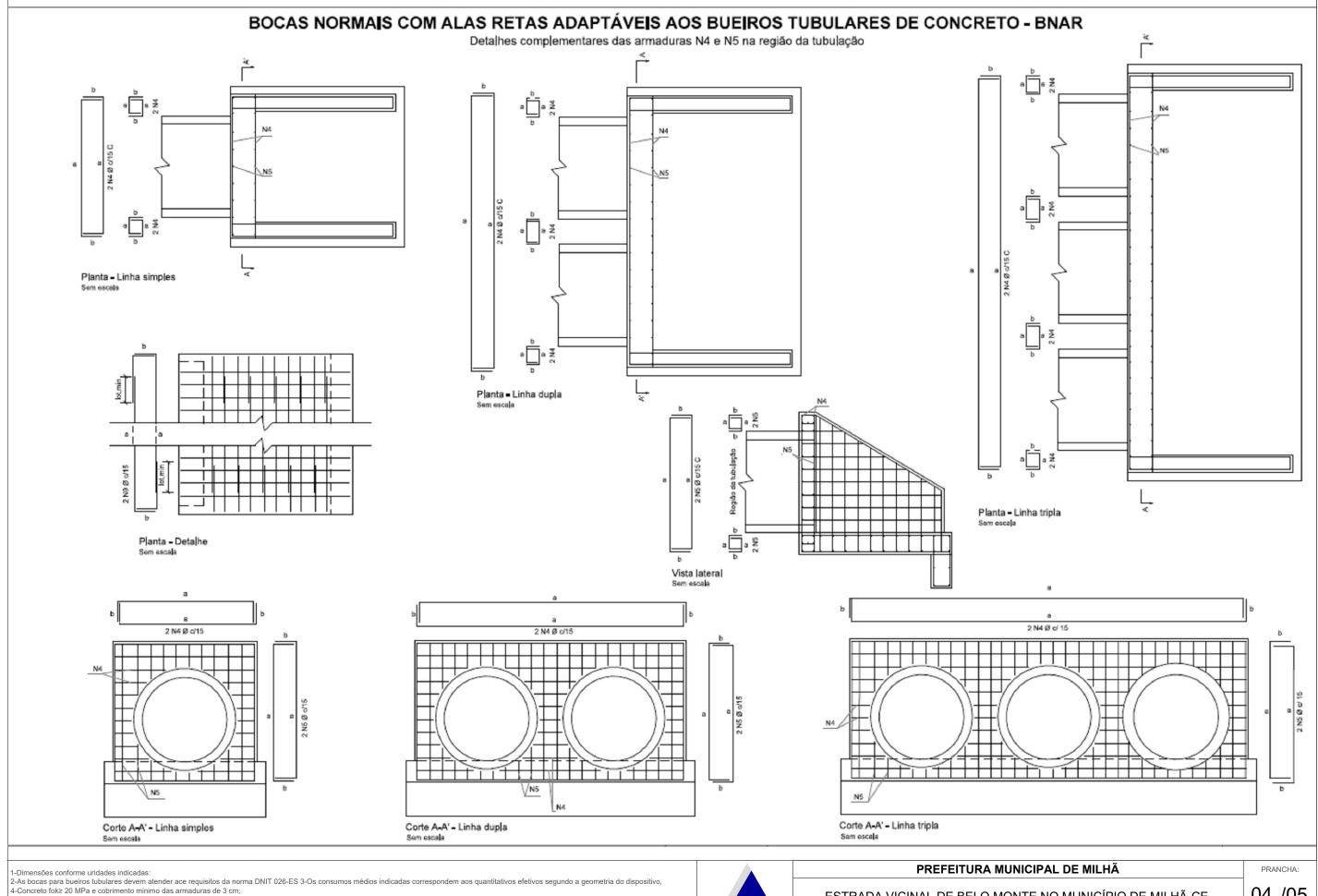
1-Dimensões conforme unidades indicadas:

2-As bocas para bueiros tubulares devem atender aos requisitos da norma DNIT 026-ES;

3-Os consumos médios indicados correspondem aos quantitativos efetivos segundo a geometria do dispositivo:

4-Concreto fok ≥ 20 MPa e cobrimento minimo das armaduras de 3 cm;

5-A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolitica:


6-As armaduras N4 e N5 foram distribuidas em torno dos tubos de Classe PA4, os quais apresentam paredes mais espessas e, consequentemente, diâmetros externos maiores. Caso se utilize tubos com classe diferente da mencionada, tais armaduras deverão ser redistribuídas em tono do diâmetro externo dos tubos, de modo a manterem o cobrimento mínimo de 3 cm.

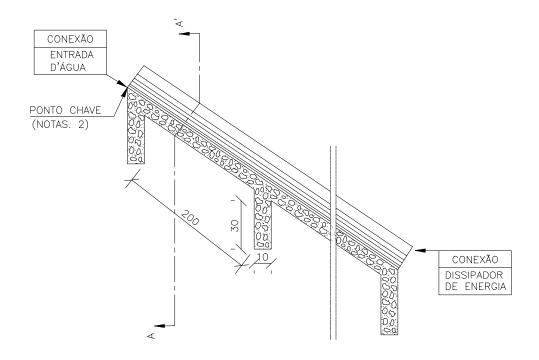
7-As armaduras de diámetro 6,3 mm, 8 mm e 10 mm podem precisar de emenda, quando isso acontecer, deverá ser realizada por traspasse, de modo alternado, empregando-se, respectivamente, os

empregando-se, respectivamente, os comprimentos mínimos (L.) de 24 cm. 30 cm e 38 cm, conforme a desenho 6.4 (g).

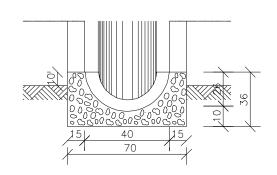
	PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
ESTRA	ADA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ-CE	03 /05
	DETALHAMENTO DE DRENAGEM	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
ARQUIVO:	MLH_REP_DETDREN_BELO MONTE_R0.DWG	SEIVI ESC.

Artur Othon Silva Lima Eng® Civil – CREA 352222-CE

	PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
ESTRA	ADA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ-CE	04 /05
	DETALHAMENTO DE DRENAGEM	ESCALA:
PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
ARQUIVO:	MLH REP DETDREN BELO MONTE RO.DWG	SEIVI ESC.

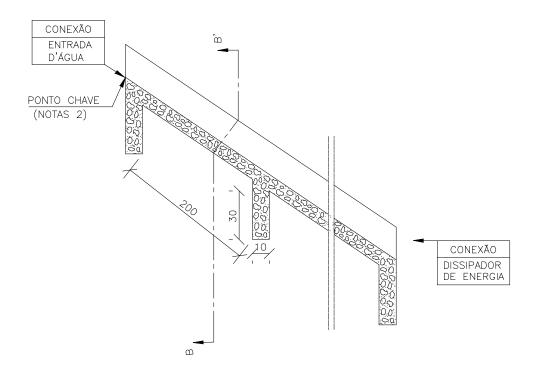

⁴⁻Concreto Tok2 20 MP3 e coorimento minimo das armaduras de 3 cm;

5-A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolitica, 6-As armaduras N4 e N5 foram distribuides em tomo dos tubos de Classe PA4, os quais apresentam paredes mais espessas e, consequentemente, diámetros extermos maiores. Caso se utilize tubos com classe diferente da mencionada, tais armaduras deverão ser redistribuidas em tomo do diâmetro externo dos tubos, de modo a manterem o cobrimento minimo de 3 cm

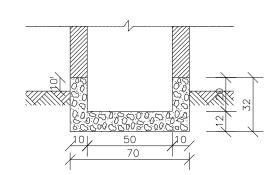

7-As armaduras de diámetro 6.3 mm, 8 mm e 10 mm podem precisar de emenda, quando isso acontecer, deverá ser realizada por traspasse, de modo altemado, constituendo de constituencia de modo altemado. JOTA BARROS PROJETOS

DESCIDAS D'ÁGUA DE ATERROS TIPO RÁPIDO (I)

DAR - 01 MEIA CANA DE CONCRETO **CORTE LONGITUDINAL**



CORTE TRANSVERSAL AA'

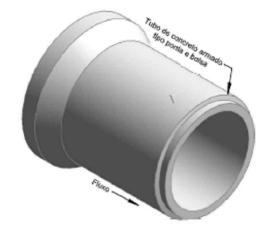


CONSUMOS MÉDIOS	•
CONCRETO fck ≥15MPa	0,175m ³ /m
FORMAS	0,76m ² /m
MEIO-TUBO Ø40cm	1,00m/m
ESCAVAÇÃO	0,36m ³ /m
APILOAMENTO	0,17m ³ /m

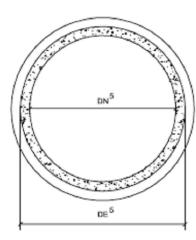
DAR - 02 CANAL RETANGULAR EM CONCRETO SIMPLES **CORTE LONGITUDINAL**

CORTE TRANSVERSAL BB'

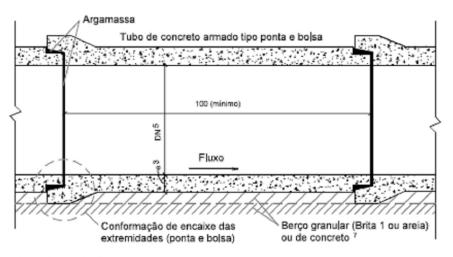
CONSUMOS MÉDIOS	
CONCRETO fck ≥15MPa	0,137m ³ /m
FORMAS	1,10m ² /m
ESCAVAÇÃO	0,20m ³ /m
APILOAMENTO	0,15m ³ /m


Notas:
1— Dimensões em cm;
2— O "ponto chave" indica a amarração aos detalhes apresentados para as "entradas d'água";
3— Executar juntas de dilatação a intervalos máximos de 10m segundo o talude, preenchendo—as com

anten Othon Silia Lema JOTA BARROS PROJETOS
Artur Othon Silva Lima
Eng® Civil - CREA 352222-CE


B
JOTA BARROS PROJETOS
PROJETOS

		PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
	ESTRA	DA VICINAL DE BELO MONTE NO MUNICÍPIO DE MILHÃ-CE	05 /05
		DETALHAMENTO DE DRENAGEM	ESCALA:
_	PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
	ARQUIVO:	MLH_REP_DETDREN_BELO MONTE_R0.DWG	SEIVI ESC.


TUBOS DE CONCRETO ARMADO APLICÁVEIS AOS BUEIROS - TC

Perspectiva

Seção transversal Sem escala

Seção |ongitudina| Som oscala

Berço granular (Brita 1 ou													Clas	ses de	resistê	ncia do	s tubos																		
								Berço	granu	lar (Brit	ta 1 ou	areia)														Berço	de cor	ncreto							
1	ições de	DN							Altu	ıra de a	aterro (m) 4							DN							Altu	ıra de a	aterro (m) ⁴						
assen	tamento	(cm)	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,50	6,00	6,50	7,00	7,50	8,00	8,50	(cm)	1,00	1,50	2,00	2,50	3,00	3,50	4,00	4,50	5,00	5,50	6,00	6,50	7,00	7,50	8,00	8,50
	Vala com talude vertical	60	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA4	PA4	60	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3
		80	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	80	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA3
kN/m³	om t ertic	100	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	100	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2
KN.	ala c ve	120	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	120	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2
≥ 19	Š	150	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	150	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2	PA2						
ν шоэ	Aterro	60	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	ESP	60	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4
8 8		80	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	80	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4
Solos		100	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	100	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA4
	×	120	PA1	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	120	PA1	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4
		150	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	150	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4						
	<u>a</u>	60	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	PA4	PA4	60	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3	PA3
	alud	80	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	PA4	80	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA3
"E	om t	100	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	100	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3
kN/m³	Vala com talude vertical	120	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	PA4	120	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3
s 21	S S	150	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4	PA4	PA4	150	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3
>		60	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA4	PA4	PA4	PA4	ESP	ESP	ESP	ESP	60	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4
moo so		80	PA1	PA1	PA1	PA2	PA2	PA3	PA3	PA3	PA3	PA4	PA4	PA4	ESP	ESP	ESP	ESP	80	PA1	PA1	PA1	PA1	PA1	PA2	PA2	PA2	PA3	PA3	PA3	PA3	PA3	PA4	PA4	PA4

100

120

150

PA1

PA2

PA1

PA1

PA2

PA2

PA2

PA2

PA2

PA2

100

120

150

PA1

PA1

PA1

PA1

PA1

PA1

Aterro

PA1 PA1

PA2

PA1

PA2

PA2

PA2

PA2

PA2

PA2

PA3

PA3

PA3

PA3

PA3

PA3

PA3

PA3

PA3

PA4 PA4

PA4 PA4

PA4 PA4

PA4

PA1

PA1

⁴⁻ Altura do aterro (h) acima do tubo até o greide de pavimento;
5- Diâmetro nominal (DN), Diâmetro externo (DE), espessura da parede (e), peso específico do solo (y) e classe especcial (ESP);

6-Nos desenhos 6.3 (a) e (b) são apresentadas as seções típicas para assentamento dos tubos sobre berço granular (Brita 1 ou areia) ou de concreto:

7-Para o detalhamento do berço de concreto consultar o desenho 6.1 (a) e para o berço granular (Brita 1 ou areia) consultar o desenho 6.1 (b) 6-Nos desenhos 6.3 (a) e (b) são apresentadas as seções tipicas para assentatinento dos tubos sobre perço grandar (Brita 1 ou areia) consultar o desenho 6.1 (b). Artúr Othon Silva Lima 7-Para o detalhamento do berço de concreto consultar o desenho 6.1 (a) e para o berço grandlar (Brita 1 ou areia) consultar o desenho 6.1 (b). Engª Civil — CREA 352222-CE

		PREFEITURA MUNICIPAL DE MILHÃ						
	ESTRADA '	VICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO						
	NO MUNICÍPIO DE MILHÃ-CE							
415	DETALHAMENTO DE DRENAGEM							
IOTA DADDOC	PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE						
JOTA BARROS PROJETOS	ARQUIVO:	MLH_REP_DETDREN_SÃO JOÃO_M00.DWG						

PA3

PA4

PA4

PA3

PA4

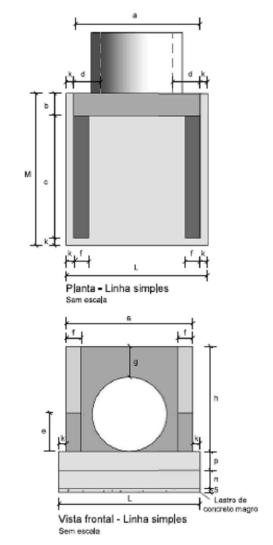
PA4

01 /04

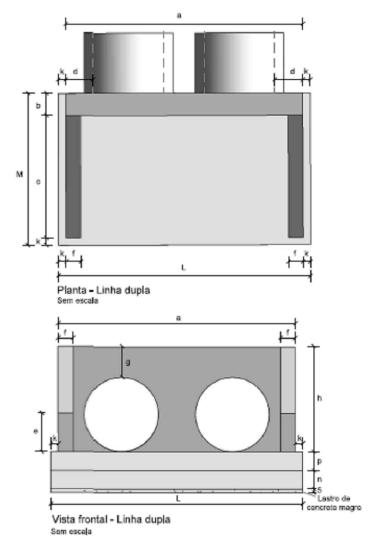
SEM ESC.

PA2

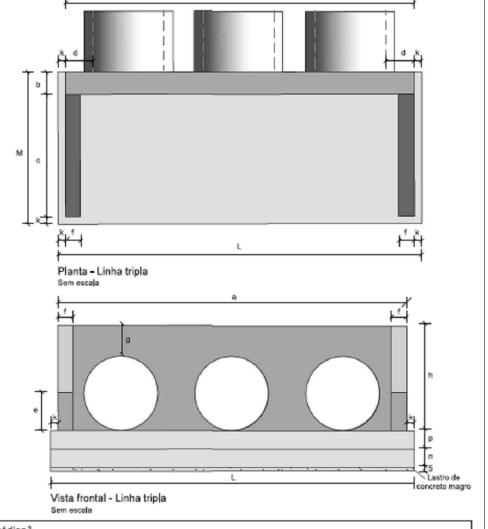
PA2


PA2

⁻ Dimensões em centímetros (Cm), exceto alturas de aterro, indicadas em metros (m);

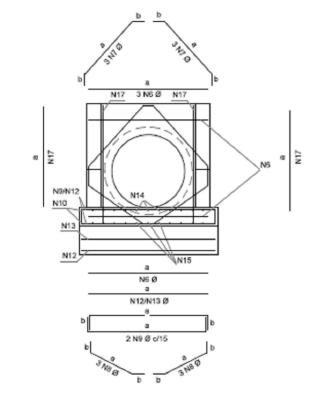

²⁻ os bueiros tubulares de concreto devem atender aos requisitos da norma DNIT 023-ES

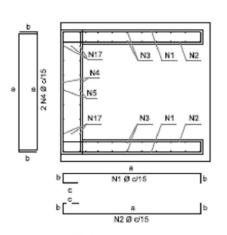
^{3 -} As classes de resistência aplicam-se aos bueiros de concreto armado com encaixe ponta e bolsa, com dimensões conforme a norma ABNT NBR 8890, assentados em linhas simples, duplas ou triplas;


BOCAS NORMAIS COM ALAS RETAS ADAPTÁVEIS AOS BUEIROS TUBULARES DE CONCRETO - BNAR

Inter Other Silva Lima JOTA BARROS PROJETOS

	Consumos médios ³																				
	Dispositivo	Adaptável em	Encaixável em	a (cm)	b (cm)	c (cm)	d (cm)	e (cm)	f (cm)	g (cm)	h (cm)	k (cm)	m (cm)	n (cm)	p (cm)	L (cm)	M (cm)	Concreto magro (m³/un)	Fôrma (m²/un)	Concreto fck ≥ 20 MPa (m³/un)	Aço CA-50 (kg/un)
	BNAR 01	BSTC 60	DAD 60-26	110	20	125	25	41	15	28	88	10	20	30	20	130	155	0,1008	5,9465	0,8600	49,3535
simples	BNAR 02	BSTC 80	DAD 125-30	125	25	145	23	46	15	40	120	10	20	30	20	145	180	0,1305	8,4867	1,2194	74,9853
	BNAR 03	BSTC 100	DAD 170-35	170	30	165	35	52	20	42	142	10	25	40	25	190	205	0,1948	12,1262	2,2926	136,9862
Linha	BNAR 04	BSTC 120	DAD 200-40	200	40	180	40	58	20	43	163	10	25	40	25	220	230	0,2530	15,3481	3,1322	206,5227
	BNAR 05	BSTC 150	DAD 240-54	240	50	260	45	75	20	44	194	10	25	40	30	260	320	0,4160	24,7097	5,5992	353,2299
_	BNAR 06	BDTC 80	-	260	25	145	26	35	15	40	120	10	20	30	20	280	180	0,2520	10,9094	2,0417	129,6944
dupla	BNAR 07	BDTC 100	DAD 320-35	320	30	165	34	52	20	42	142	10	25	40	25	340	205	0,3485	15,5654	3,6146	216,1476
Linha	BNAR 08	BDTC 120	DAD 370-45	370	40	180	36	63	20	43	163	10	25	40	25	390	230	0,4485	19,6781	4,9537	300,3186
	BNAR 09	BDTC 150	DAD 435-55	435	50	260	36	76	20	44	194	10	25	40	30	455	320	0,7280	29,9674	8,6793	522,9481
tripla	BNAR 10	BTTC 100	DAD 470-35	470	30	165	32	52	20	42	142	10	25	40	25	490	205	0,5023	19,0046	4,9368	295,5107
ha tri	BNAR 11	BTTC 120	-	545	40	180	35	60	20	43	163	10	25	40	25	565	230	0,6498	23,8762	6,8128	455,0895
Linha	BNAR 12	BTTC 150	-	650	50	260	37	80	20	44	194	10	25	40	30	670	320	1,0720	36,2891	12,1810	711,1437

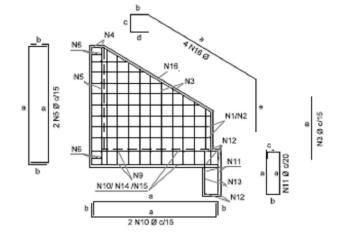

- 1-Dimensões em centimetros (cm);
- 2-As bocas para bueiros tubulares devem atender aos requisitos da norma DNIT 026-ES;
- 3- Os consumos médios indicados correspondem aos quantitativos efetivos segundo a geometria do dispositivo;
- Artur Othon Silva Lima 4-A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolítica; Eng® Civil - CREA 352222-CE 5-Tubos de concreto armado com encaixe ponta e bolsa, possuem espessura (e) variável de acordo com a classe de resistência, conforme a norma ABNT NBR 8890.

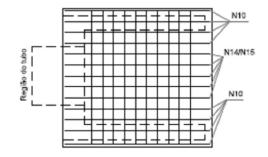


PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:				
ESTRADA VICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO NO MUNICÍPIO DE MILHÃ-CE					
DETALHAMENTO DE DRENAGEM	ESCALA:				
PROJETISTA: ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC				
ARQUIVO: MI H REP DETDREN SÃO JOÃO MOD DWG	SEINI ESC				

BOCAS NORMAIS COM ALAS RETAS ADAPTÁVEIS AOS BUEIROS SIMPLES TUBULARES DE CONCRETO - BNAR

Quadro de armaduras													
Dispositivo	Adaptável em	Posição	ø	Quantidade	Espaçamento		Dob	ora (c	m)		Comp. Unitário	Comp. Total	Peso Total
Diopositivo	2 mapter of offi	1 ooiyao	(mm)	(un)	(cm)	a	b	С	ď	е	(cm)	(cm)	(kg)
		N1	6,3	10	15	VAR	9	21	-	-	VAR	1535	3,7608
		N2	6,3	10	15	VAR	9	21	-	-	VAR	1535	3,7608
		N3	6,3	36	15	VAR	-	-	-	-	VAR	2824	6,9188
		N4 ⁶	6,3	26	15	VAR	14	-	-	-	VAR	1737	4,2557
		N5 ⁶	6,3	24	15	VAR	14	-	-	-	VAR	1725	4,2263
		N6	6,3	6	7	104	-	-	-	-	104	624	1,5288
		N7	6,3	6	7	52	15	-	-	-	82	494	1,2092
BNAR 01	BSTC 60	N8	6,3	6	7	42	15	-	-	-	72	434	1,0640
Bitrato	5010 00	N9	6,3	16	15	124	14	-	-	-	152	2432	5,9584
		N10	6,3	12	15	149	14	-	-	-	177	2124	5,2038
		N11	5,0	9	20	44	14	9	-	-	134	1206	1,8572
		N12	8,0	6	-	124	-	-	-	-	124	744	2,9388
		N13	5,0	2	-	124	-	-	-	-	124	248	0,3819
		N14	6,3	3	15	129	14	-	-	-	157	471	1,1540
		N15	6,3	3	15	149	7	17		-	187	561	1,3745
		N16	6,3	4	_	127	20	14	14	56	231	923	2,2614
		N17	6,3	6	7	102	-	-	-	-	102	612	1,4994
		N1	6,3	14	15	VAR	9	21	-	-	VAR	2254	5,5223
		N2	6,3	14	15	VAR	9	21	-	-	VAR	2254	5,5223
		N3	6,3	36	15	VAR	-	-	-	-	VAR	3833	9,3908
	BSTC 80	N4 ⁶	8,0	34	15	VAR	19	-	-	-	VAR	2502	9,8829
		N5 ⁶	8,0	32	15	VAR	19	-	-	-	VAR	2455	9,6973
		N6	8,0	6	9	119	-	-	-	-	119	714	2,8203
		N7	8,0	6	9	84	15	-	-	-	114	684	2,6999
BNAR 02		N8	8,0	6	9	57	15	-	-	-	87	525	2,0726
		N9	6,3	18	15	139	14	-	-	-	167	3006	7,3647
		N10	6,3	12	15	174	14	-	-	-	202	2424	5,9388
		N11	5,0	10	20	44	14	9	-	-	134	1340	2,0636
		N12	6,3	6	-	139	-	-	-	-	139	834	2,0433
		N13	5,0	2	-	139	1.	-	-	-	139	278	0,4281
		N14	6,3	4	15 15	149	14 5	19	- 44	-	177 212	708 846	1,7346
		N15 N16	6,3 6,3	4	- 15	174 160	21	25	14 19	36	261	1043	2,0727 2,5554
		N17	8.0	6	9	134	-	-		-	134	804	3,1758
		N1	6,3	18	15	VAR	14	21	-	-	VAR	3459	8,4746
		N2	6,3	18	15	VAR	14	21	-	-	VAR	3459	8,4746
		N3	6,3	48	15	VAR	-	-	-	-	VAR	5613	13,7519
		N4 6	8,0	42	15	VAR	24	-	-	-	VAR	4178	16,5031
		N5 ⁶	8,0	40	15	VAR	24	-	-	-	VAR	4068	16,0686
		N6	8,0	6	12	164	-	-	-	-	164	984	3,8868
		N7	8,0	6	12	113	15	-	-	-	143	855	3,3787
BNAR 03	BSTC 100	N8	8,0	6	12	90	15	-	-	-	120	717	2,8331
DINAR US	D310 100	N9	8,0	22	15	184	19	-	-	~	222	4884	19,2918
		N10	8,0	16	15	199	19	-	-	-	237	3792	14,9784
		N11	6,3	13	20	59	19	9	-	-	174	2262	5,5419
		N12	10,0	6	-	184	-	-	-	-	184	1104	6,8117
		N13	6,3	2	-	184	-	-	-	-	184	368	0,9016
		N14	8,0	5	15	169	19	19	-	-	207	1035	4,0883
		N15	8,0	5	15	199	7	24	19	-	249	1248	4,9296
		N16	6,3	4	-	185	26	24	24	72	332	1329	3,2561
		N17	8,0	6	12	161	-	-	-	-	161	966	3,8157

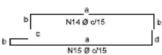




Planta Armadura dos muros de aja e de testa Sem escaja

Vista fronta

Armadura de borda para a proteção do tubo Armadura de laje de fundação Sem escala



Planta

Armadura da laje de fundação Sem escala

Região do tubo de concreto

Vista lateral

Armadura dos muros de ala e de testa Armadura da viga e da Jaje de fundação

1-Dimensões conforme unidades indicadas:

2-As bocas para bueiros tubulares devem atender aos requisitos da norma DNIT 026-ES;

3-Os consumos médios indicados correspondem aos quantitativos efetivos segundo a geometria do dispositivo:

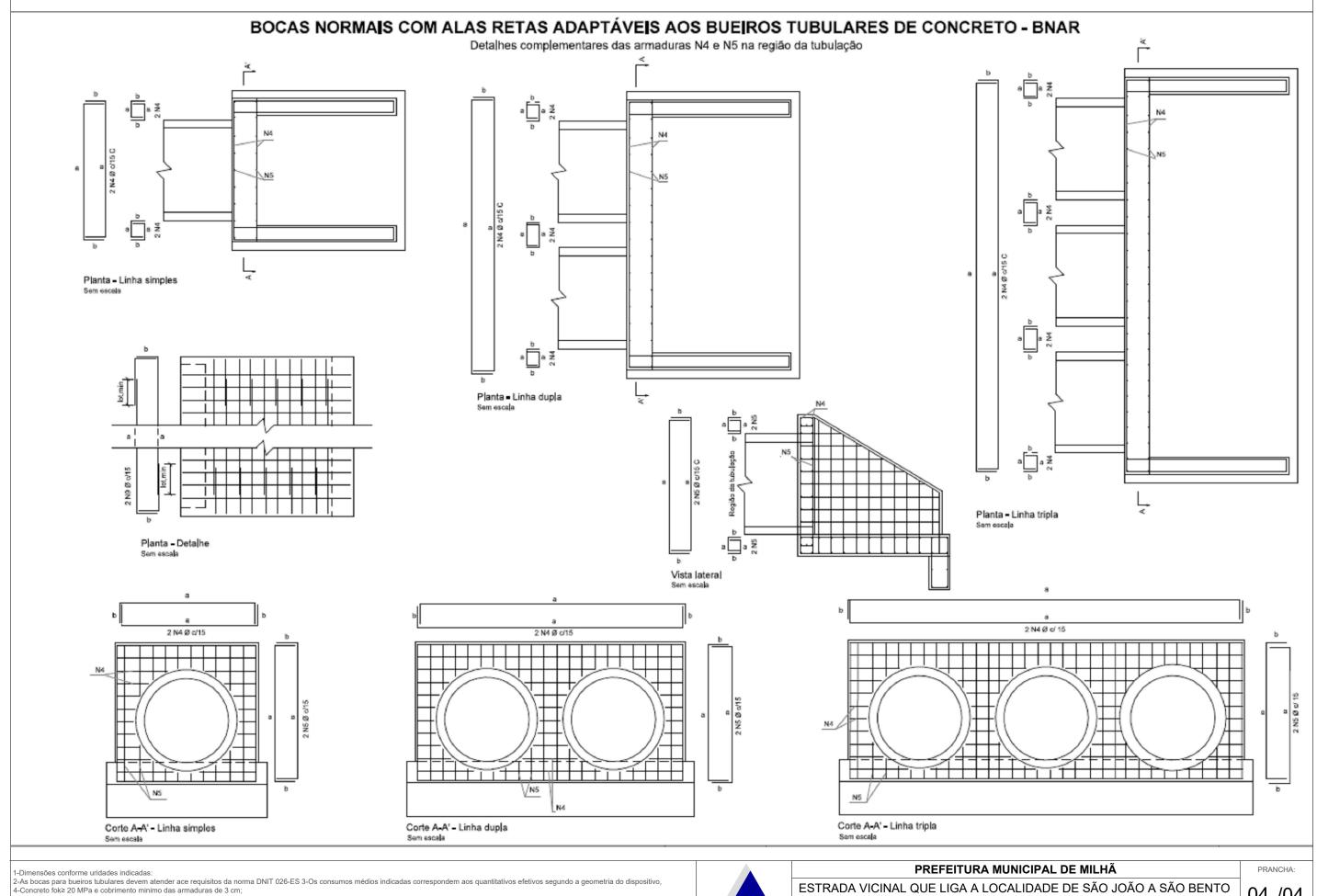
4-Concreto fok ≥ 20 MPa e cobrimento minimo das armaduras de 3 cm;

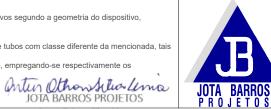
5-A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolitica:

6-As armaduras N4 e N5 foram distribuidas em torno dos tubos de Classe PA4, os quais apresentam paredes mais espessas e, consequentemente, diâmetros externos maiores. Caso se utilize tubos com classe diferente da mencionada, tais armaduras deverão ser redistribuídas em tono do diâmetro extemo dos tubos, de modo a manterem o cobrimento mínimo de 3 cm.

7-As armaduras de diámetro 6,3 mm, 8 mm e 10 mm podem precisar de emenda, quando isso acontecer, deverá ser realizada por traspasse, de modo alternado, empregando-se, respectivamente, os

empregando-se, respectivamente, os comprimentos minimos (L.) de 24 cm. 30 cm e 38 cm, conforme a desenho 6.4 (g).




Ontin Othon Silva Lema JOTA BARROS PROJETOS

Artur Othon Silva Lima

Eng® Civil - CREA 352222-CE

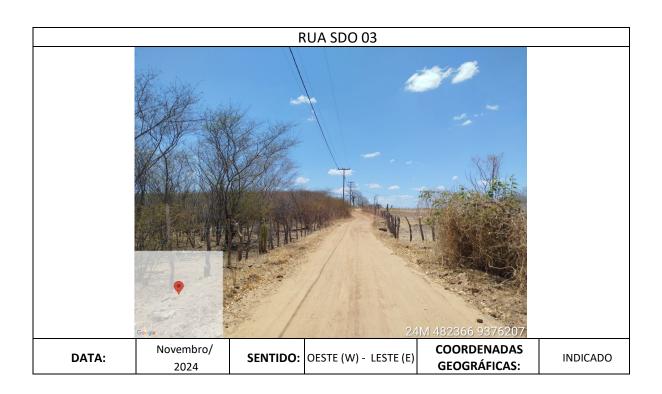
		PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:
	ESTRADA '	VICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO	03 /04
		NO MUNICÍPIO DE MILHÃ-CE	00 /04
		DETALHAMENTO DE DRENAGEM	ESCALA:
7	PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.
	ARQUIVO:	MLH_REP_DETDREN_SÃO JOÃO_M00.DWG	SEIVI ESC.

		PREFEITURA MUNICIPAL DE MILHÃ	PRANCHA:						
	ESTRADA VICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO								
		NO MUNICÍPIO DE MILHÃ-CE							
		DETALHAMENTO DE DRENAGEM	ESCALA:						
	PROJETISTA:	ARTUR OTHON SILVA LIMA- ENG° CIVIL - CREA: 352222CE	SEM ESC.						
1	ARQUIVO:	MLH_REP_DETDREN_SÃO JOÃO_M00.DWG	SEIVI ESC.						

⁵⁻A testa, as alas e a soleira devem ser executadas em conjunto, formando uma estrutura monolitica, 6-As armaduras N4 e N5 foram distribuides em tomo dos tubos de Classe PA4, os quais apresentam paredes mais espessas e, consequentemente, diámetros extermos maiores. Caso se utilize tubos com classe diferente da mencionada, tais armaduras deverão ser redistribuidas em tomo do diâmetro externo dos tubos, de modo a manterem o cobrimento minimo de 3 cm
7-As armaduras de diámetro 6.3 mm, 8 mm e 10 mm podem precisar de emenda, quando isso acontecer, deverá ser realizada por traspasse, de modo altemado, empregando-se respectivamente os

RELATÓRIO FOTOGRÁFICO

OBJETO: ESTRADA VICINAL NA LOCALIDADE DE BELO MONTE NO MUNICÍPIO DE MILHÃ - CE



ARTUR OTHON SILVA LIMA Eng^o CIVIL - CREA: 352222CE RESPONSÁVEL TÉCNICO

RELATÓRIO FOTOGRÁFICO

OBJETO: ESTRADA VICINAL QUE LIGA A LOCALIDADE DE SÃO JOÃO A SÃO BENTO NO MUNICÍPIO DE MILHÃ-CE

Eng[®] Civil - CREA 352222-CE

ARTUR OTHON SILVA LIMA Eng^o CIVIL - CREA: 352222CE RESPONSÁVEL TÉCNICO

